meilisearch.models package
Submodules
meilisearch.models.document module
meilisearch.models.embedders module
- class meilisearch.models.embedders.Distribution(*args: Any, **kwargs: Any)[source]
Bases:
CamelBase
Distribution settings for embedders.
- Parameters:
mean (float) – Mean value between 0 and 1
sigma (float) – Sigma value between 0 and 1
- mean: float
- sigma: float
- class meilisearch.models.embedders.Embedders(*args: Any, **kwargs: Any)[source]
Bases:
CamelBase
Container for embedder configurations.
- Parameters:
embedders (Dict[str, Union[OpenAiEmbedder, HuggingFaceEmbedder, OllamaEmbedder, RestEmbedder, UserProvidedEmbedder]]) – Dictionary of embedder configurations, where keys are embedder names
- embedders: Dict[str, EmbedderType]
- class meilisearch.models.embedders.HuggingFaceEmbedder(*args: Any, **kwargs: Any)[source]
Bases:
CamelBase
HuggingFace embedder configuration.
- Parameters:
source (str) – The embedder source, must be “huggingFace”
url (Optional[str]) – The URL Meilisearch contacts when querying the embedder
model (Optional[str]) – The model your embedder uses when generating vectors (defaults to BAAI/bge-base-en-v1.5)
dimensions (Optional[int]) – Number of dimensions in the chosen model
revision (Optional[str]) – Model revision hash
document_template (Optional[str]) – Template defining the data Meilisearch sends to the embedder
document_template_max_bytes (Optional[int]) – Maximum allowed size of rendered document template (defaults to 400)
distribution (Optional[Distribution]) – Describes the natural distribution of search results
binary_quantized (Optional[bool]) – Once set to true, irreversibly converts all vector dimensions to 1-bit values
- binary_quantized: bool | None = None
- dimensions: int | None = None
- distribution: Distribution | None = None
- document_template: str | None = None
- document_template_max_bytes: int | None = None
- model: str | None = None
- revision: str | None = None
- source: str = 'huggingFace'
- url: str | None = None
- class meilisearch.models.embedders.OllamaEmbedder(*args: Any, **kwargs: Any)[source]
Bases:
CamelBase
Ollama embedder configuration.
- Parameters:
source (str) – The embedder source, must be “ollama”
url (Optional[str]) – The URL Meilisearch contacts when querying the embedder (defaults to http://localhost:11434/api/embeddings)
api_key (Optional[str]) – Authentication token Meilisearch should send with each request to the embedder
model (Optional[str]) – The model your embedder uses when generating vectors
dimensions (Optional[int]) – Number of dimensions in the chosen model
document_template (Optional[str]) – Template defining the data Meilisearch sends to the embedder
document_template_max_bytes (Optional[int]) – Maximum allowed size of rendered document template (defaults to 400)
distribution (Optional[Distribution]) – Describes the natural distribution of search results
binary_quantized (Optional[bool]) – Once set to true, irreversibly converts all vector dimensions to 1-bit values
- api_key: str | None = None
- binary_quantized: bool | None = None
- dimensions: int | None = None
- distribution: Distribution | None = None
- document_template: str | None = None
- document_template_max_bytes: int | None = None
- model: str | None = None
- source: str = 'ollama'
- url: str | None = None
- class meilisearch.models.embedders.OpenAiEmbedder(*args: Any, **kwargs: Any)[source]
Bases:
CamelBase
OpenAI embedder configuration.
- Parameters:
source (str) – The embedder source, must be “openAi”
url (Optional[str]) – The URL Meilisearch contacts when querying the embedder
api_key (Optional[str]) – Authentication token Meilisearch should send with each request to the embedder
model (Optional[str]) – The model your embedder uses when generating vectors (defaults to text-embedding-3-small)
dimensions (Optional[int]) – Number of dimensions in the chosen model
document_template (Optional[str]) – Template defining the data Meilisearch sends to the embedder
document_template_max_bytes (Optional[int]) – Maximum allowed size of rendered document template (defaults to 400)
distribution (Optional[Distribution]) – Describes the natural distribution of search results
binary_quantized (Optional[bool]) – Once set to true, irreversibly converts all vector dimensions to 1-bit values
- api_key: str | None = None
- binary_quantized: bool | None = None
- dimensions: int | None = None
- distribution: Distribution | None = None
- document_template: str | None = None
- document_template_max_bytes: int | None = None
- model: str | None = None
- source: str = 'openAi'
- url: str | None = None
- class meilisearch.models.embedders.RestEmbedder(*args: Any, **kwargs: Any)[source]
Bases:
CamelBase
REST API embedder configuration.
- Parameters:
source (str) – The embedder source, must be “rest”
url (Optional[str]) – The URL Meilisearch contacts when querying the embedder
api_key (Optional[str]) – Authentication token Meilisearch should send with each request to the embedder
dimensions (Optional[int]) – Number of dimensions in the embeddings
document_template (Optional[str]) – Template defining the data Meilisearch sends to the embedder
document_template_max_bytes (Optional[int]) – Maximum allowed size of rendered document template (defaults to 400)
request (Dict[str, Any]) – A JSON value representing the request Meilisearch makes to the remote embedder
response (Dict[str, Any]) – A JSON value representing the request Meilisearch expects from the remote embedder
headers (Optional[Dict[str, str]]) – Custom headers to send with the request
distribution (Optional[Distribution]) – Describes the natural distribution of search results
binary_quantized (Optional[bool]) – Once set to true, irreversibly converts all vector dimensions to 1-bit values
- api_key: str | None = None
- binary_quantized: bool | None = None
- dimensions: int | None = None
- distribution: Distribution | None = None
- document_template: str | None = None
- document_template_max_bytes: int | None = None
- headers: Dict[str, str] | None = None
- request: Dict[str, Any]
- response: Dict[str, Any]
- source: str = 'rest'
- url: str | None = None
- class meilisearch.models.embedders.UserProvidedEmbedder(*args: Any, **kwargs: Any)[source]
Bases:
CamelBase
User-provided embedder configuration.
- Parameters:
source (str) – The embedder source, must be “userProvided”
dimensions (int) – Number of dimensions in the embeddings
distribution (Optional[Distribution]) – Describes the natural distribution of search results
binary_quantized (Optional[bool]) – Once set to true, irreversibly converts all vector dimensions to 1-bit values
- binary_quantized: bool | None = None
- dimensions: int
- distribution: Distribution | None = None
- source: str = 'userProvided'
meilisearch.models.index module
- class meilisearch.models.index.EmbedderDistribution(*args: Any, **kwargs: Any)[source]
Bases:
CamelBase
- mean: float
- sigma: float
- class meilisearch.models.index.Faceting(*args: Any, **kwargs: Any)[source]
Bases:
CamelBase
- max_values_per_facet: int
- sort_facet_values_by: Dict[str, str] | None = None
- class meilisearch.models.index.LocalizedAttributes(*args: Any, **kwargs: Any)[source]
Bases:
CamelBase
- attribute_patterns: List[str]
- locales: List[str]
- class meilisearch.models.index.MinWordSizeForTypos(*args: Any, **kwargs: Any)[source]
Bases:
CamelBase
- one_typo: int | None = None
- two_typos: int | None = None
- class meilisearch.models.index.Pagination(*args: Any, **kwargs: Any)[source]
Bases:
CamelBase
- max_total_hits: int
meilisearch.models.key module
- class meilisearch.models.key.Key(*args: Any, **kwargs: Any)[source]
Bases:
_KeyBase
- created_at: datetime
- key: str
- updated_at: datetime | None = None
- class meilisearch.models.key.KeyUpdate(*args: Any, **kwargs: Any)[source]
Bases:
CamelBase
- actions: List[str] | None = None
- description: str | None = None
- expires_at: datetime | None = None
- indexes: List[str] | None = None
- key: str
- model_config = {'ser_json_timedelta': 'iso8601'}
- name: str | None = None
meilisearch.models.task module
- class meilisearch.models.task.Batch(*args: Any, **kwargs: Any)[source]
Bases:
CamelBase
- details: Dict[str, Any] | None = None
- duration: str | None = None
- finished_at: datetime | None = None
- progress: Dict[str, float | List[Dict[str, Any]]] | None = None
- started_at: datetime | None = None
- stats: Dict[str, int | Dict[str, Any]] | None = None
- uid: int
- class meilisearch.models.task.BatchResults(*args: Any, **kwargs: Any)[source]
Bases:
CamelBase
- from_: int
- limit: int
- next_: int | None
- total: int
- class meilisearch.models.task.Task(*args: Any, **kwargs: Any)[source]
Bases:
CamelBase
- canceled_by: int | None = None
- details: Dict[str, Any] | None = None
- duration: str | None = None
- enqueued_at: datetime
- error: Dict[str, Any] | None = None
- finished_at: datetime | None = None
- index_uid: str | None = None
- started_at: datetime | None = None
- status: str
- type: str
- uid: int