meilisearch.models package

Submodules

meilisearch.models.document module

class meilisearch.models.document.Document(doc: Dict[str, Any])[source]

Bases: object

class meilisearch.models.document.DocumentsResults(resp: Dict[str, Any])[source]

Bases: object

meilisearch.models.embedders module

class meilisearch.models.embedders.Distribution(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

Distribution settings for embedders.

Parameters:
  • mean (float) – Mean value between 0 and 1

  • sigma (float) – Sigma value between 0 and 1

mean: float
sigma: float
class meilisearch.models.embedders.Embedders(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

Container for embedder configurations.

Parameters:

embedders (Dict[str, Union[OpenAiEmbedder, HuggingFaceEmbedder, OllamaEmbedder, RestEmbedder, UserProvidedEmbedder]]) – Dictionary of embedder configurations, where keys are embedder names

embedders: Dict[str, EmbedderType]
class meilisearch.models.embedders.HuggingFaceEmbedder(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

HuggingFace embedder configuration.

Parameters:
  • source (str) – The embedder source, must be “huggingFace”

  • url (Optional[str]) – The URL Meilisearch contacts when querying the embedder

  • model (Optional[str]) – The model your embedder uses when generating vectors (defaults to BAAI/bge-base-en-v1.5)

  • dimensions (Optional[int]) – Number of dimensions in the chosen model

  • revision (Optional[str]) – Model revision hash

  • document_template (Optional[str]) – Template defining the data Meilisearch sends to the embedder

  • document_template_max_bytes (Optional[int]) – Maximum allowed size of rendered document template (defaults to 400)

  • distribution (Optional[Distribution]) – Describes the natural distribution of search results

  • binary_quantized (Optional[bool]) – Once set to true, irreversibly converts all vector dimensions to 1-bit values

binary_quantized: bool | None = None
dimensions: int | None = None
distribution: Distribution | None = None
document_template: str | None = None
document_template_max_bytes: int | None = None
model: str | None = None
revision: str | None = None
source: str = 'huggingFace'
url: str | None = None
class meilisearch.models.embedders.OllamaEmbedder(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

Ollama embedder configuration.

Parameters:
  • source (str) – The embedder source, must be “ollama”

  • url (Optional[str]) – The URL Meilisearch contacts when querying the embedder (defaults to http://localhost:11434/api/embeddings)

  • api_key (Optional[str]) – Authentication token Meilisearch should send with each request to the embedder

  • model (Optional[str]) – The model your embedder uses when generating vectors

  • dimensions (Optional[int]) – Number of dimensions in the chosen model

  • document_template (Optional[str]) – Template defining the data Meilisearch sends to the embedder

  • document_template_max_bytes (Optional[int]) – Maximum allowed size of rendered document template (defaults to 400)

  • distribution (Optional[Distribution]) – Describes the natural distribution of search results

  • binary_quantized (Optional[bool]) – Once set to true, irreversibly converts all vector dimensions to 1-bit values

api_key: str | None = None
binary_quantized: bool | None = None
dimensions: int | None = None
distribution: Distribution | None = None
document_template: str | None = None
document_template_max_bytes: int | None = None
model: str | None = None
source: str = 'ollama'
url: str | None = None
class meilisearch.models.embedders.OpenAiEmbedder(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

OpenAI embedder configuration.

Parameters:
  • source (str) – The embedder source, must be “openAi”

  • url (Optional[str]) – The URL Meilisearch contacts when querying the embedder

  • api_key (Optional[str]) – Authentication token Meilisearch should send with each request to the embedder

  • model (Optional[str]) – The model your embedder uses when generating vectors (defaults to text-embedding-3-small)

  • dimensions (Optional[int]) – Number of dimensions in the chosen model

  • document_template (Optional[str]) – Template defining the data Meilisearch sends to the embedder

  • document_template_max_bytes (Optional[int]) – Maximum allowed size of rendered document template (defaults to 400)

  • distribution (Optional[Distribution]) – Describes the natural distribution of search results

  • binary_quantized (Optional[bool]) – Once set to true, irreversibly converts all vector dimensions to 1-bit values

api_key: str | None = None
binary_quantized: bool | None = None
dimensions: int | None = None
distribution: Distribution | None = None
document_template: str | None = None
document_template_max_bytes: int | None = None
model: str | None = None
source: str = 'openAi'
url: str | None = None
class meilisearch.models.embedders.RestEmbedder(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

REST API embedder configuration.

Parameters:
  • source (str) – The embedder source, must be “rest”

  • url (Optional[str]) – The URL Meilisearch contacts when querying the embedder

  • api_key (Optional[str]) – Authentication token Meilisearch should send with each request to the embedder

  • dimensions (Optional[int]) – Number of dimensions in the embeddings

  • document_template (Optional[str]) – Template defining the data Meilisearch sends to the embedder

  • document_template_max_bytes (Optional[int]) – Maximum allowed size of rendered document template (defaults to 400)

  • request (Dict[str, Any]) – A JSON value representing the request Meilisearch makes to the remote embedder

  • response (Dict[str, Any]) – A JSON value representing the request Meilisearch expects from the remote embedder

  • headers (Optional[Dict[str, str]]) – Custom headers to send with the request

  • distribution (Optional[Distribution]) – Describes the natural distribution of search results

  • binary_quantized (Optional[bool]) – Once set to true, irreversibly converts all vector dimensions to 1-bit values

api_key: str | None = None
binary_quantized: bool | None = None
dimensions: int | None = None
distribution: Distribution | None = None
document_template: str | None = None
document_template_max_bytes: int | None = None
headers: Dict[str, str] | None = None
request: Dict[str, Any]
response: Dict[str, Any]
source: str = 'rest'
url: str | None = None
class meilisearch.models.embedders.UserProvidedEmbedder(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

User-provided embedder configuration.

Parameters:
  • source (str) – The embedder source, must be “userProvided”

  • dimensions (int) – Number of dimensions in the embeddings

  • distribution (Optional[Distribution]) – Describes the natural distribution of search results

  • binary_quantized (Optional[bool]) – Once set to true, irreversibly converts all vector dimensions to 1-bit values

binary_quantized: bool | None = None
dimensions: int
distribution: Distribution | None = None
source: str = 'userProvided'

meilisearch.models.index module

class meilisearch.models.index.EmbedderDistribution(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

mean: float
sigma: float
class meilisearch.models.index.Faceting(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

max_values_per_facet: int
sort_facet_values_by: Dict[str, str] | None = None
class meilisearch.models.index.IndexStats(doc: Dict[str, Any])[source]

Bases: object

class meilisearch.models.index.LocalizedAttributes(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

attribute_patterns: List[str]
locales: List[str]
class meilisearch.models.index.MinWordSizeForTypos(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

one_typo: int | None = None
two_typos: int | None = None
class meilisearch.models.index.Pagination(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

max_total_hits: int
class meilisearch.models.index.ProximityPrecision(*values)[source]

Bases: str, Enum

BY_ATTRIBUTE = 'byAttribute'
BY_WORD = 'byWord'
class meilisearch.models.index.TypoTolerance(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

disable_on_attributes: List[str] | None = None
disable_on_words: List[str] | None = None
enabled: bool = True
min_word_size_for_typos: MinWordSizeForTypos | None = None

meilisearch.models.key module

class meilisearch.models.key.Key(*args: Any, **kwargs: Any)[source]

Bases: _KeyBase

created_at: datetime
key: str
updated_at: datetime | None = None
validate_created_at(v: str) datetime[source]
validate_updated_at(v: str) datetime | None[source]
class meilisearch.models.key.KeyUpdate(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

actions: List[str] | None = None
description: str | None = None
expires_at: datetime | None = None
indexes: List[str] | None = None
key: str
model_config = {'ser_json_timedelta': 'iso8601'}
name: str | None = None
class meilisearch.models.key.KeysResults(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

limit: int
offset: int
results: List[Key]
total: int

meilisearch.models.task module

class meilisearch.models.task.Batch(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

details: Dict[str, Any] | None = None
duration: str | None = None
finished_at: datetime | None = None
progress: Dict[str, float | List[Dict[str, Any]]] | None = None
started_at: datetime | None = None
stats: Dict[str, int | Dict[str, Any]] | None = None
uid: int
validate_finished_at(v: str) datetime | None[source]
validate_started_at(v: str) datetime | None[source]
class meilisearch.models.task.BatchResults(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

from_: int
limit: int
next_: int | None
results: List[Batch]
total: int
class meilisearch.models.task.Task(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

canceled_by: int | None = None
details: Dict[str, Any] | None = None
duration: str | None = None
enqueued_at: datetime
error: Dict[str, Any] | None = None
finished_at: datetime | None = None
index_uid: str | None = None
started_at: datetime | None = None
status: str
type: str
uid: int
validate_enqueued_at(v: str) datetime[source]
validate_finished_at(v: str) datetime | None[source]
validate_started_at(v: str) datetime | None[source]
class meilisearch.models.task.TaskInfo(*args: Any, **kwargs: Any)[source]

Bases: CamelBase

enqueued_at: datetime
index_uid: str | None
status: str
task_uid: int
type: str
validate_enqueued_at(v: str) datetime[source]
class meilisearch.models.task.TaskResults(resp: Dict[str, Any])[source]

Bases: object

Module contents